pc.multvar.RdFunctions to evaluate and simulate from multivariate PC priors: The simplex and sphere case
inla.pc.multvar.h.default(x, inverse = FALSE, derivative = FALSE)
inla.pc.multvar.simplex.r(n = NULL, lambda = 1, h = inla.pc.multvar.h.default, b = NULL)
inla.pc.multvar.simplex.d(x = NULL, lambda = 1, log = FALSE, h = inla.pc.multvar.h.default, b = NULL)
inla.pc.multvar.sphere.r(n = NULL, lambda = 1, h = inla.pc.multvar.h.default, H = NULL)
inla.pc.multvar.sphere.d(x = NULL, lambda = 1, log = FALSE, h = inla.pc.multvar.h.default, H = NULL)Samples to evaluate. If input is a matrix then each row is a sample. If input is a vector then this is the sample.
Compute the inverse of the h()-function.
Compute the derivative of the h()-function. (derivative of the inverse function is not used).
Number of samples to generate.
The lambda-parameter in the PC-prior.
Evaluate the density in log-scale or ordinary scale.
The h()-function, defaults to inla.pc.multvar.h.default. See that code
for an example of how to write a user-spesific function.
The b-vector (gradient) in the expression for the simplex option, d(xi) = h(b^T xi)
The H(essian)-matrix in the expression for the sphere option, d(xi) =
h(1/2 *xi^T H xi). If H is a vector, then it is interpreted as the
diagonal of a (sparse) diagonal matrix.
These functions implements multivariate PC-priors of the simplex and sphere type.
inla.pc.multvar.simplex.r generate samples from the simplex case, and
inla.pc.multvar.simplex.d evaluate the density.
inla.pc.multvar.sphere.r generate samples from the sphere case, and
inla.pc.multvar.sphere.d evaluate the density.
inla.pc.multvar.h.default implements the default h()-function and illustrate how
to code your own spesific one, if needed.