All functions

as.inla.mesh.segment inla.sp2segment

Convert sp curve objects to inla.mesh.segment objects.

BivMetaAnalysis

Data are taken from a meta-analysis to compare the utility of three types of diagnostic imaging - lymphangiography (LAG), computed tomography (CT) and magnetic resonance (MR) - to detect lymph node metastases in patients with cervical cancer. The dataset consists of a total of 46 studies: the first 17 for LAG, the following 19 for CT and the last 10 for MR.

Cancer

~~ A concise (1-5 lines) description of the dataset. ~~

control.bgev.default inla.set.control.bgev.default.default

Control variables in control.bgev.default for use in inla

control.compute inla.set.control.compute.default

Control variables in control.compute for use in inla

control.expert inla.set.control.expert.default

Control variables in control.expert for use in inla

control.family inla.set.control.family.default

Control variables in control.family for use in inla

control.fixed inla.set.control.fixed.default

Control variables in control.fixed for use in inla

control.group inla.set.control.group.default

Control variables in control.group for use in inla

control.hazard inla.set.control.hazard.default

Control variables in control.hazard for use in inla

control.inla inla.set.control.inla.default

Control variables in control.inla for use in inla

control.lincomb inla.set.control.lincomb.default

Control variables in control.lincomb for use in inla

control.link inla.set.control.link.default

Control variables in control.link for use in inla

control.mix inla.set.control.mix.default

Control variables in control.mix for use in inla

control.mode inla.set.control.mode.default

Control variables in control.mode for use in inla

control.predictor inla.set.control.predictor.default

Control variables in control.predictor for use in inla

control.results inla.set.control.results.default

Control variables in control.results for use in inla

control.update inla.set.control.update.default

Control variables in control.update for use in inla

cut inla.cut

This function performs group-wise, cross-validatory model assessment for an INLA model using so-called node-splitting (Marshall and Spiegelhalter, 2007; Presanis et al, 2013). The user inputs an object of class inla (i.e. a result of a call to inla() ) as well as a variable name ( split.by ) specifying a grouping: Data points that share the same value of split.by are in the same group. The function then checks whether each group is an "outlier", or in conflict with the remaining groups, using the methodology described in Ferkingstad et al (2017). The result is a vector containing a p-value for each group, corresponding to a test for each group i , where the null hypothesis is that group i is consistent with the other groups except i (so a small p-value is evidence that the group is an "outlier"). See Ferkingstad et al (2017) for further details.

debug.graph inla.debug.graph

Debug a graph specification on file (ascii-mode only), by checking the specification along the way.

Drivers

Montly total of car drivers killed or several injuried in England from January 1969 to December 1984 NB: The last 12 lines of the data set have the first column set to NULL since these data where not observed but we want to predict them.

Epil

Seizure counts in a randomised trial of anti-convulsant therpay in epilepsy for 59 patients.

extract.groups

Extract boundary or internal segments tagged by group id:s.

f inla.set.control.group.default list c inla.set.control.fixed.default exp

Function used for defining of smooth and spatial terms within inla model formulae. The function does not evaluate anything - it exists purely to help set up a model. The function specifies one smooth function in the linear predictor (see inla.list.models ) as $$w\ f(x)$$

fgn inla.fgn

This function will return the coefficients in the 3-component AR(1) mixture representing FGN(H)

geobugs2inla inla.geobugs2inla

Various utility functions for INLA

geobugs2inla inla.geobugs2inla

Various utility functions for INLA

Germany

Cases of Oral cavity cancer in Germany from 1986-1990

graph2matrix inla.graph2matrix inla.spy

Construct a neighbour-matrix from a graph and disaply it

graph2matrix inla.graph2matrix inla.spy

Construct a neighbour-matrix from a graph and disaply it

idx inla.idx max rep length

Convert indexes given by to triplet `(idx, group, replicate)' to the (one-dimensional) index used in the grouped and replicated model

inla c list inla.getOption parent.frame

inla performs a full Bayesian analysis of additive models using Integrated Nested Laplace approximation

inla-class

The inla class is defined in the INLA package

INLA-package

Package to perform full Bayesian analysis on generalised additive mixed models using Integrated Nested Laplace Approximations.

inla.ar inla.ar.pacf2phi inla.ar.phi2pacf inla.ar.pacf2acf length inla.ar.phi2acf

These functions convert between the AR(p) coefficients phi , the partial autorcorrelation coefficients pacf and the autocorrelation function acf . The phi -parameterization is the same as used for arima -models in R ; see ?arima and the parameter-vector a in Details .

inla.ar inla.ar.pacf2phi inla.ar.phi2pacf inla.ar.pacf2acf length inla.ar.phi2acf

These functions convert between the AR(p) coefficients phi , the partial autorcorrelation coefficients pacf and the autocorrelation function acf . The phi -parameterization is the same as used for arima -models in R ; see ?arima and the parameter-vector a in Details .

inla.as.sparse inla.as.dgTMatrix

Convert a matrix or sparse matrix into the sparse format used by INLA (dgTMatrix)

inla.as.sparse inla.as.dgTMatrix

Convert a matrix or sparse matrix into the sparse format used by INLA (dgTMatrix)

inla.as.wkt_tree.wkt inla.as.wkt.wkt_tree inla.wkt_tree_get_item inla.wkt_tree_set_item

Conversion between WKT and a tree representation

inla.barrier inla.barrier.pcmatern inla.barrier.polygon inla.barrier.q inla.barrier.fem

Functions for defining Barrier models as an inla rgeneric model

inla.barrier inla.barrier.pcmatern inla.barrier.polygon inla.barrier.q inla.barrier.fem

Functions for defining Barrier models as an inla rgeneric model

inla.binary.install

Install alternative binary builds.

inla.binary.install

Install alternative binary builds.

inla.changelog

List the recent changes in the inla-program and its R-interface

inla.changelog

List the recent changes in the inla-program and its R-interface

inla.collect.results inla.set.control.results.default

inla.collect.results collect results from a inla-call

inla.collect.results inla.set.control.results.default

inla.collect.results collect results from a inla-call

inla.compare.results

A small utility to compare INLA and MCMC results (OBSOLETE)

inla.compare.results

A small utility to compare INLA and MCMC results (OBSOLETE)

inla.coxph list inla.rbind.data.frames

Tools to convert a Cox proportional hazard model into Poisson regression

inla.coxph list inla.rbind.data.frames

Tools to convert a Cox proportional hazard model into Poisson regression

inla.cpo

Improve the estimates of the CPO/PIT-values be recomputing the model-fit by removing data-points.

inla.cpo

Improve the estimates of the CPO/PIT-values be recomputing the model-fit by removing data-points.

inla.CRS inla.wkt_predef

Creates either a CRS object or an inla.CRS object, describing a coordinate reference system

inla.CRSargs

Wrapper for sp::CRS and inla.CRS objects to extract the coordinate reference system argument string. Should no longer be used with PROJ6/rgdal3; see inla.crs_get_wkt

inla.dBind

Build a block-diagonal sparse matrix. Obsolete wrapper for bdiag() .

inla.dev.new

Open a new device using dev.new unless using RStudio

inla.dev.new

Open a new device using dev.new unless using RStudio

inla.diameter

Find an upper bound to the convex hull of a point set

inla.doc

View documentation of latent, prior and likelihood models.

inla.doc

View documentation of latent, prior and likelihood models.

inla.extract.el

Extract elements by wildcard name matching from a data.frame , list , or matrix .

inla.fmesher.smorg

Low level function for computing finite element matrices, spherical harmonics, B-splines, and point mappings with barycentric triangle coordinates.

inla.generate.colors

Generates a tex RGB color specification matrix based on a color palette.

inla.group c

inla.group group or cluster covariates so to reduce the number of unique values

inla.group c

inla.group group or cluster covariates so to reduce the number of unique values

inla.has_PROJ6 inla.not_for_PROJ6 inla.not_for_PROJ4 inla.fallback_PROJ6 inla.requires_PROJ6

Detect whether PROJ6 is available for INLA

inla.hyperpar

Improve the estimates of the posterior marginals for the hyperparameters of the model using the grid integration strategy.

inla.hyperpar

Improve the estimates of the posterior marginals for the hyperparameters of the model using the grid integration strategy.

inla.hyperpar.sample

Produce samples from the approximated joint posterior for the hyperparameters

inla.hyperpar.sample

Produce samples from the approximated joint posterior for the hyperparameters

inla.identical.CRS

Wrapper for identical, optionally testing only the CRS part of two objects

inla.knmodels list c paste paste0

It implements the models in Knorr-Held, L. (2000) with three different constraint approaches: sum-to-zero, contrast or diagonal add.

inla.knmodels list c paste paste0

It implements the models in Knorr-Held, L. (2000) with three different constraint approaches: sum-to-zero, contrast or diagonal add.

inla.knmodels.sample

It implements the sampling method for the models in Knorr-Held, L. (2000) considering the algorithm 3.1 in Rue & Held (2005) book.

inla.knmodels.sample

It implements the sampling method for the models in Knorr-Held, L. (2000) considering the algorithm 3.1 in Rue & Held (2005) book.

inla.ks.plot

Illustrate a one-sample Kolmogorov-Smirnov test by plotting the empirical distribution deviation.

inla.ks.plot

Illustrate a one-sample Kolmogorov-Smirnov test by plotting the empirical distribution deviation.

inla.list.models names inla.models

List available model components, likelihoods, priors, etc. To read specific documentation for the individual elements, use inla.doc .

inla.list.models names inla.models

List available model components, likelihoods, priors, etc. To read specific documentation for the individual elements, use inla.doc .

inla.load

Load or source a file: (internal use)

inla.load

Load or source a file: (internal use)

inla.matern.cov inla.matern.cov.s2

Calculates covariance and correlation functions for Matern models and related oscillating SPDE models, on \(R^d\) and on the sphere, \(S^2\).

inla.mdata is.inla.mdata as.inla.mdata

This defines an mdata-object for matrix valued response-families

inla.mdata is.inla.mdata as.inla.mdata

This defines an mdata-object for matrix valued response-families

inla.merge merge rep length

Merge a mixture of inla -objects

inla.merge merge rep length

Merge a mixture of inla -objects

inla.mesh.1d range

Create a 1D mesh specification inla.mesh.1d object, that defines a function space for 1D SPDE models.

inla.mesh.1d.A c inla.mesh.1d.bary

Calculates barycentric coordinates and weight matrices for inla.mesh.1d objects.

inla.mesh.2d

Create a triangle mesh based on initial point locations, specified or automatic boundaries, and mesh quality parameters.

inla.mesh.assessment

Assess the finite element approximation errors in a mesh for interactive R sessions. More detailed assessment tools are in meshbuilder .

inla.mesh.assessment

Assess the finite element approximation errors in a mesh for interactive R sessions. More detailed assessment tools are in meshbuilder .

inla.mesh.basis

Calculate basis functions on a 1d or 2d inla.mesh

inla.mesh.boundary inla.mesh.interior

Constructs an list of inla.mesh.segment object from boundary or interior constraint information in an inla.mesh object.

inla.mesh.components

Compute subsets of vertices and triangles in an inla.mesh object that are connected by edges.

inla.mesh.components

Compute subsets of vertices and triangles in an inla.mesh object that are connected by edges.

inla.mesh.create missing is.null inla.delaunay

Create a constrained refined Delaunay triangulation (CRDT) for a set of spatial locations.

inla.mesh.create.helper

Create a triangle mesh based on initial point locations, specified or automatic boundaries, and mesh quality parameters.

inla.mesh.deriv

Calculates directional derivative matrices for functions on inla.mesh objects.

inla.mesh.fem inla.mesh.1d.fem

Constructs finite element matrices for inla.mesh and inla.mesh.1d objects.

inla.mesh.lattice seq if is.matrix dim c length

Construct a lattice grid for inla.mesh

inla.mesh.map c inla.mesh.map.lim

Calculates coordinate mappings for inla.mesh projections.

inla.mesh.project inla.mesh.projector c

Calculate a lattice projection to/from an inla.mesh

inla.mesh.query

Query information about an inla.mesh object.

inla.mesh.segment inla.contour.segment seq nrow ncol pretty range seq_len length

Constructs inla.mesh.segment objects that can be used to specify boundary and interior constraint edges in calls to inla.mesh .

inla.models

This page describe the models implemented in inla , divided into sections: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper .

inla.nmix.lambda.fitted

For use with 'nmix' and 'nmixnb' models. This function takes the information contained in an object returned by inla() and uses the contents to create fitted lambda values using the linear predictor for log(lambda), the input covariate values, and samples from the posteriors of the model hyperparameters. Fitted values from the linear predictor are exponentiated, by default, before being returned.

inla.nmix.lambda.fitted

For use with 'nmix' and 'nmixnb' models. This function takes the information contained in an object returned by inla() and uses the contents to create fitted lambda values using the linear predictor for log(lambda), the input covariate values, and samples from the posteriors of the model hyperparameters. Fitted values from the linear predictor are exponentiated, by default, before being returned.

inla.nonconvex.hull inla.nonconvex.hull.basic

Constructs a nonconvex boundary for a point set using morphological operations.

inla.option inla.setOption inla.getOption

Set and get global options for INLA

inla.option inla.setOption inla.getOption

Set and get global options for INLA

inla.over_sp_mesh c

Wrapper for the over method to find triangle centroids or vertices inside sp polygon objects

inla.pardiso inla.pardiso.check

Describe and check the PARDISO support in R-INLA

inla.pardiso inla.pardiso.check

Describe and check the PARDISO support in R-INLA

inla.priors.used

Print the priors used for the hyperparameters

inla.priors.used

Print the priors used for the hyperparameters

inla.prune

Prune the INLA-package by deleting binary files not supported by the running OS

inla.prune

Prune the INLA-package by deleting binary files not supported by the running OS

inla.qstat inla.qget inla.qdel inla.qlog inla.qnuke summary print

Control and view a remote inla-queue of submitted jobs

inla.qstat inla.qget inla.qdel inla.qlog inla.qnuke summary print

Control and view a remote inla-queue of submitted jobs

inla.reorderings

Provide the names of all implemented reordering schemes

inla.reorderings

Provide the names of all implemented reordering schemes

inla.rerun

Rerun inla on an inla-object (output from link{inla} )

inla.rerun

Rerun inla on an inla-object (output from link{inla} )

inla.row.kron

Takes two Matrices and computes the row-wise Kronecker product. Optionally applies row-wise weights and/or applies an additional 0/1 row-wise Kronecker matrix product, as needed by inla.spde.make.A .

inla.rw inla.rw1 inla.rw2

Constructs precision matrices for first- and second-order random walk (RW1/RW2) latent models used within INLA .

inla.sample inla.posterior.sample list inla.posterior.sample.eval

This function generate samples, and functions of those, from an approximated posterior of a fitted model (an inla-object)

inla.sample inla.posterior.sample list inla.posterior.sample.eval

This function generate samples, and functions of those, from an approximated posterior of a fitted model (an inla-object)

inla.sens

TODO

inla.sens

TODO

inla.simplify.curve

Attempts to simplify a polygonal curve by joining nearly colinear segments.

inla.sp_get_crs

Wrapper for CRS(projargs) (PROJ4) and CRS(wkt) for sp::Spatial objects.

inla.spde.make.A c

Constructs observation/prediction weight matrices for models based on inla.mesh and inla.mesh.1d objects.

inla.spde.make.block.A max c

Constructs observation/prediction weight matrices for numerical integration schemes for regional data problems. Primarily intended for internal use by inla.spde.make.A .

inla.spde.make.index

Generates a list of named index vectors for an SPDE model.

inla.spde.models inla.spde1.models inla.spde2.models

List SPDE models supported by inla.spde objects

inla.spde.precision c inla.spde2.theta2phi0 inla.spde2.theta2phi1 inla.spde2.theta2phi2 inla.spde2.precision inla.spde1.precision

Calculates the precision matrix for given parameter values based on an inla.spde model object.

inla.spde.result inla.spde1.result inla.spde2.result

Exctract field and parameter values and distributions for an inla.spde SPDE effect from an inla result object.

inla.spde.sample

Old methods fo sampling from a SPDE model. For new code, use inla.spde.precision and inla.qsample instead.

inla.spde1.create c inla.spde1.matern inla.spde1.imatern inla.spde1.matern.osc

Create an inla.spde1 model object.

inla.spde2.generic c rep length cbind diag inla.spde2.theta2phi0 inla.spde2.theta2phi1 inla.spde2.theta2phi2

Creates and inla.spde2 object describing the internal structure of an 'spde2' model.

inla.spde2.matern c matrix

Create an inla.spde2 model object for a Matern model. Use inla.spde2.pcmatern instead for a PC prior for the parameters.

inla.spde2.matern.sd.basis

Calculates an approximate basis for tau and kappa for an inla.spde2.matern model where tau is a rescaling parameter.

inla.spde2.pcmatern c

Create an inla.spde2 model object for a Matern model, using a PC prior for the parameters.

inla.spTransform

Handles transformation of various inla objects accorting to coordinate reference systems of sp::CRS or inla.CRS class.

inla.ssh.copy.id inla.remote

Initialize the definition file and print the path to the internal script to transfer ssh-keys

inla.ssh.copy.id inla.remote

Initialize the definition file and print the path to the internal script to transfer ssh-keys

inla.stack inla.stack.remove.unused inla.stack.compress inla.stack.sum inla.stack.join inla.stack.index inla.stack.LHS inla.stack.RHS inla.stack.data inla.stack.A

Functions for combining data, effects and observation matrices into inla.stack objects, and extracting information from such objects.

inla.surv plot print is.inla.surv as.inla.surv

Create a survival object, to be used as a response variable in a model formula for the inla function for survival models.

inla.surv plot print is.inla.surv as.inla.surv

Create a survival object, to be used as a response variable in a model formula for the inla function for survival models.

inla.upgrade inla.update

Functions to upgrade the INLA -package to the current version.

inla.upgrade inla.update

Functions to upgrade the INLA -package to the current version.

inla.version c

Show the version of the INLA-package

inla.version c

Show the version of the INLA-package

inla.wkt_is_geocent inla.crs_is_geocent inla.wkt_get_ellipsoid_radius inla.crs_get_ellipsoid_radius inla.wkt_set_ellipsoid_radius inla.crs_set_ellipsoid_radius inla.wkt_unit_params inla.wkt_get_lengthunit inla.wkt_set_lengthunit inla.crs_get_wkt inla.crs_get_lengthunit inla.crs_set_lengthunit

Get and set CRS object or WKT string properties.

joint.marginal inla.rjmarginal inla.rjmarginal.eval

Sample and evalue from from a joint marginal approximation as returned using argument selection in inla .

joint.marginal inla.rjmarginal inla.rjmarginal.eval

Sample and evalue from from a joint marginal approximation as returned using argument selection in inla .

jp.define inla.jp.define

A framework for defining joint priors in R

jp.define inla.jp.define

A framework for defining joint priors in R

Kidney

Times of infection from the time to insertion of the catheter for 38 kindey patients using portable dialysis equipment

lattice2node inla.lattice2node.mapping inla.node2lattice.mapping inla.lattice2node inla.node2lattice inla.matrix2vector inla.vector2matrix

These functions define mapping in between two-dimensional indices on a lattice and the one-dimensional node representation used in inla . The mapping from node to lattice follows the default R behaviour (which is column based storage), and as.vector(A) and matrix(a, nrow, ncol) can be used instead of inla.matrix2vector and inla.vector2matrix .

Leuk

This the Leukemia data from Henderson et al (2003); see source.

lines.inla.mesh.segment lines c

Draws a inla.mesh.segment object with generic or rgl graphics.

link inla.link.log inla.link.invlog inla.link.neglog inla.link.invneglog inla.link.logit inla.link.invlogit inla.link.probit inla.link.invprobit inla.link.cloglog inla.link.invcloglog inla.link.loglog inla.link.invloglog inla.link.tan inla.link.invtan inla.link.cauchit inla.link.invcauchit inla.link.identity inla.link.invidentity inla.link.inverse inla.link.invinverse inla.link.robit inla.link.invrobit inla.link.sn inla.link.invsn inla.link.invalid inla.link.invinvalid

Define link-functions and its inverse

link inla.link.log inla.link.invlog inla.link.neglog inla.link.invneglog inla.link.logit inla.link.invlogit inla.link.probit inla.link.invprobit inla.link.cloglog inla.link.invcloglog inla.link.loglog inla.link.invloglog inla.link.tan inla.link.invtan inla.link.cauchit inla.link.invcauchit inla.link.identity inla.link.invidentity inla.link.inverse inla.link.invinverse inla.link.robit inla.link.invrobit inla.link.sn inla.link.invsn inla.link.invalid inla.link.invinvalid

Define link-functions and its inverse

make.lincomb inla.make.lincomb inla.make.lincombs

Create a linear combination or several linear combinations, as input to inla(..., lincomb = <lincomb>)

make.lincomb inla.make.lincomb inla.make.lincombs

Create a linear combination or several linear combinations, as input to inla(..., lincomb = <lincomb>)

marginal inla.dmarginal inla.pmarginal inla.qmarginal inla.rmarginal inla.hpdmarginal inla.smarginal inla.emarginal inla.mmarginal inla.tmarginal c inla.zmarginal

Density, distribution function, quantile function, random generation, hpd-interval, interpolation, expectations, mode and transformations of marginals obtained by inla or inla.hyperpar() . These functions computes the density (inla.dmarginal), the distribution function (inla.pmarginal), the quantile function (inla.qmarginal), random generation (inla.rmarginal), spline smoothing (inla.smarginal), computes expected values (inla.emarginal), computes the mode (inla.mmarginal), transforms the marginal (inla.tmarginal), and provide summary statistics (inla.zmarginal).

meshbuider meshbuilder

Interactively design and build a triangle mesh for use with SPDE models, and assess the finite element approximation errors. The R code needed to recreate the mesh outside the interactive Shiny app is also generated. Spatial objects can be imported from the global workspace.

meshbuider meshbuilder

Interactively design and build a triangle mesh for use with SPDE models, and assess the finite element approximation errors. The R code needed to recreate the mesh outside the interactive Shiny app is also generated. Spatial objects can be imported from the global workspace.

Munich

The Munich rent data

nwEngland

This map is used in association to the Leukemia data from Henderson et al (2003); see source.

Oral

~~ A concise (1-5 lines) description of the dataset. ~~

param2.matern.orig matrix c

Construct parameter settings for inla.spde2.matern models.

pc.alphaw inla.pc.ralphaw inla.pc.dalphaw inla.pc.qalphaw inla.pc.palphaw

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the alpha parameter in the Weibull likelihood

pc.alphaw inla.pc.ralphaw inla.pc.dalphaw inla.pc.qalphaw inla.pc.palphaw

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the alpha parameter in the Weibull likelihood

pc.ar inla.pc.ar.rpacf inla.pc.ar.dpacf

Functions to evaluate and sample from the PC prior for an AR(p) model

pc.ar inla.pc.ar.rpacf inla.pc.ar.dpacf

Functions to evaluate and sample from the PC prior for an AR(p) model

pc.cor0 inla.pc.rcor0 inla.pc.dcor0 inla.pc.qcor0 inla.pc.pcor0

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the correlation in the Gaussian AR(1) model where the base-model is zero correlation.

pc.cor0 inla.pc.rcor0 inla.pc.dcor0 inla.pc.qcor0 inla.pc.pcor0

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the correlation in the Gaussian AR(1) model where the base-model is zero correlation.

pc.cor1 inla.pc.rcor1 inla.pc.dcor1 inla.pc.qcor1 inla.pc.pcor1

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the correlation in the Gaussian AR(1) model where the base-model is correlation one.

pc.cor1 inla.pc.rcor1 inla.pc.dcor1 inla.pc.qcor1 inla.pc.pcor1

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the correlation in the Gaussian AR(1) model where the base-model is correlation one.

pc.cormat inla.pc.cormat.dim2p inla.pc.cormat.p2dim inla.pc.cormat.theta2R inla.pc.cormat.R2theta inla.pc.cormat.r2R inla.pc.cormat.R2r inla.pc.cormat.r2theta inla.pc.cormat.theta2r inla.pc.cormat.permute inla.pc.cormat.rtheta inla.pc.cormat.dtheta

Functions to evaluate and sample from the PC prior for a correlation matrix.

pc.cormat inla.pc.cormat.dim2p inla.pc.cormat.p2dim inla.pc.cormat.theta2R inla.pc.cormat.R2theta inla.pc.cormat.r2R inla.pc.cormat.R2r inla.pc.cormat.r2theta inla.pc.cormat.theta2r inla.pc.cormat.permute inla.pc.cormat.rtheta inla.pc.cormat.dtheta

Functions to evaluate and sample from the PC prior for a correlation matrix.

pc.ddof inla.pc.ddof

A function to evaluate the PC-prior for the degrees of freedom in a standarized Student-t distribution

pc.ddof inla.pc.ddof

A function to evaluate the PC-prior for the degrees of freedom in a standarized Student-t distribution

pc.gamma inla.pc.rgamma inla.pc.dgamma inla.pc.qgamma inla.pc.pgamma

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for Gamma(1/a, 1/a)

pc.gamma inla.pc.rgamma inla.pc.dgamma inla.pc.qgamma inla.pc.pgamma

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for Gamma(1/a, 1/a)

pc.gammacount inla.pc.rgammacount inla.pc.dgammacount inla.pc.qgammacount inla.pc.pgammacount

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the gammacount likelihood

pc.gammacount inla.pc.rgammacount inla.pc.dgammacount inla.pc.qgammacount inla.pc.pgammacount

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the gammacount likelihood

pc.gevtail inla.pc.rgevtail inla.pc.dgevtail inla.pc.qgevtail inla.pc.pgevtail

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the tail parameter in the GEV likelihood

pc.gevtail inla.pc.rgevtail inla.pc.dgevtail inla.pc.qgevtail inla.pc.pgevtail

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the tail parameter in the GEV likelihood

pc.multvar inla.pc.multvar.h.default inla.pc.multvar.simplex.r inla.pc.multvar.simplex.d inla.pc.multvar.sphere.r inla.pc.multvar.sphere.d

Functions to evaluate and simulate from multivariate PC priors: The simplex and sphere case

pc.multvar inla.pc.multvar.h.default inla.pc.multvar.simplex.r inla.pc.multvar.simplex.d inla.pc.multvar.sphere.r inla.pc.multvar.sphere.d

Functions to evaluate and simulate from multivariate PC priors: The simplex and sphere case

pc.prec inla.pc.rprec inla.pc.dprec inla.pc.qprec inla.pc.pprec

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the precision in the Gaussian distribution.

pc.prec inla.pc.rprec inla.pc.dprec inla.pc.qprec inla.pc.pprec

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the precision in the Gaussian distribution.

pc.sn inla.pc.rsn inla.pc.dsn inla.pc.qsn inla.pc.psn

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the alpha parameter in the skew-normal link-function

pc.sn inla.pc.rsn inla.pc.dsn inla.pc.qsn inla.pc.psn

Functions to evaluate, sample, compute quantiles and percentiles of the PC prior for the alpha parameter in the skew-normal link-function

plot.inla plot

Takes am inla object produced by inla and plot the results

plot.inla plot

Takes am inla object produced by inla and plot the results

plot.inla.CRS plot c

Plot the outline of a CRS or inla.CRS projection, with optional graticules (transformed parallels and meridians) and Tissot indicatrices.

plot.inla.mesh plot nrow range rgb

Plots an inla.mesh object using either standard graphics or with rgl .

plot.inla.trimesh plot rgb

Plots a triangulation mesh using rgl .

PRborder

A data matrix with Longitude and Latitude coordinates for the boundary of Parana State.

print.inla print

Print a INLA fit

print.inla print

Print a INLA fit

PRprec

A data frame with daily rainfall in the Parana State.

qinv inla.qinv inla.reorderings

This routine use the GMRFLib implementation which compute parts of the inverse of a SPD sparse matrix. The diagonal and values for the neighbours in the inverse, are provided.

qreordering inla.qreordering

This function compute the reordering (or find the best reordering) using the GMRFLib implementation

qsample inla.qsample inla.reorderings ifelse missing if

This function generate samples from a GMRF using the GMRFLib implementation

qsolve inla.qsolve c

This routine use the GMRFLib implementation to solve linear systems with a SPD matrix.

rbind.inla.data.stack.info rbind

Internal function for merging raw stack information

read.graph inla.read.graph inla.write.graph c summary plot print

Construct a graph-object from a file or a matrix; write graph-object to file

rgeneric.define inla.rgeneric.define inla.rgeneric.iid.model c inla.rgeneric.ar1.model inla.rgeneric.wrapper inla.rgeneric.q

A framework for defining latent models in R

rgeneric.define inla.rgeneric.define inla.rgeneric.iid.model c inla.rgeneric.ar1.model inla.rgeneric.wrapper inla.rgeneric.q

A framework for defining latent models in R

Salm

Breslow (1984) analyses some mutagenicity assay data (shown below) on salmonella in which three plates have been processed at each dose i of quinoline and the number of revertant colonies of TA98 Salmonella measured

scale.model inla.scale.model sqrt

This function scales an intrinsic GMRF model so the geometric mean of the marginal variances is one

Scotland

The rate of lip cancer in 56 counties in Scotland is recorder. The data set includes the observed and expected cases (based on the population and its age and sex distribution in the country), a covariate measuring the percentage of the population engaged in agricolture, fishing or forestry and the "position" of each county expressed as a list of adjacent counties

Seeds

Proportion of seeds that germinated on each of 21 plates arranged according to a 2 by 2 factorial layout by seed and type of root extract

SPDEtoy

Simulated data set on 200 location points. The simulation process is made at the introduction of the SPDE tutorial.

summary.inla summary print

Takes a fitted inla or surv.inla object produced by inla or surv.inla and produces a summary from it.

summary.inla summary print

Takes a fitted inla or surv.inla object produced by inla or surv.inla and produces a summary from it.

summary.inla.mesh summary print

Construct and print inla.mesh object summaries

Surg

This example considers mortality rates in 12 hospitals performing cardiac surgery in babies

SurvSim

Simulated data set for Weibull survival model

Tokyo

Recorded days of rain above 1 mm in Tokyo for 2 years, 1983:84

Zambia

Undernutrition of children in each region of Zambia is measured through a score computed on the basis of some anthropometric measures. The data set contains also other infomation about each child.